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ABSTRACT

In structural analysis the amount of computational time necessary for a solu-

tion is proportional to the number of degrees of freedom times the bandwidth

squared. In implicit time analysis, this solution must be calculated at each

discrete point in time. If, in addition, the problem is nonlinear, then this

solution must be iterated at each point in time. If the bandwidth is large,

the size of the problem that can be analyzed is severely limited.

The multigrid method is a possible algorithm that can make this solution much

more computationally efficient. This method has been used for years in compu-

tational fluid mechanics. It works on the fact that relaxation is very effi-

cient on the high-frequency components of the solution (nearest-neighbor

interactions) but is not very efficient on the low-frequency components of the

solution (far interactions). The multigrid method relaxes the solution on a

particular model until the residual stops changing, which indicates that the

solution contains the higher frequency components. A coarse model is then gen-

erated and relaxed for the lower frequency components of the solution. These

lower frequency components are then interpolated to the fine model.

In computational fluid mechanics the equations are usually expressed as finite

differences. A coarse model is generated by just doubling the grid size and

using a Green's integral theorem to obtain the forcing function on the coarse

grid. Linear interpolation is used to transfer the lower frequency solution

back to the fine grid.

In structural dynamics the equations are usually expressed as finite elements.

Neighbor elements need not be connected. The process of condensing a fine

model into a coarse model and interpolating the low-frequency solution to the

fine model will be studied in this work.
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OBJECTIVE

The objective of this work is to use an implicit time march solution to study

nonlinear structural dynamics. The work will be done in three phases. The

first phase, a beam structure, will have application in a multishaft, combined

lateral, torsional, and axial rotordynamic analysis. The second phase, a plate

structure, will have application in bladed disk vibration with coulomb damping.

The third phase, a full three-dimensional structure, will have application in

space structures.

To aid the reader, a symbols list has been included in the appendix.

IMPLICIT TIME MARCH SOLUTION OF NONLINEAR STRUCTURAL DYNAMICS

• BEAM--MULTISHAFT, COMBINEDLATERAL,TORSIONAL,AND AXIAL ANALYSIS
• PLATE--BLADEVIBRATIONWITH COULOMBDAMPING

• THREE-DIMENSIONALSPACESTRUCTURESANALYSIS

CD-88-32936
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NUMERICALINTEGRATION

The numerical integration method is based on a Nordsieck-like method. The
displacement, velocity, and acceleration are defined at an initial time. A
modified Taylor series is used to calculate the displacement, velocity, and
acceleration at the advanced time. The Lagrange remainder term, the time
derivative of the acceleration, is calculated from the equations of motion
at the advanced time. The constants _ and _ are determined so that the
method is stable as time approaches infinity.

This method of integration for a first-order differential equation is Gear's
method (Gear, 1971). Zeleznik showedthat this method could be used on higher
order equations (private communication with F.J. Zeleznik at NASALewis
Research Center in 1979). Kascak (1980) showed that for a third-order inte-
grator used on a linear second-order differential equation the method is
unconditionally stable.

LET R(t)BE AN n ELEMENT VECTOR OF NODAL DISPLACEMENTS AND

V(t) =1_ Aft) =

MODIFIED TAYLOR SERIES

1 A(0)t 2 + 1 c_(_,)t 3
R(t) = R(0) + V(O)t +_- _.

V(t) =V(0) + A(0)t + ½ 13,_(_,)t2

A(t)=A(O)+/_(E,)t

WHERE

o<_,<t

AND a AND 13ARE DETERMINEDSO THAT THEMETHOD IS NUMERI-

CALLY STABLE AS t - oo

CD-88-32937
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NUMERICALSTABILITY

The numerical stability of the integration method can be examined by substi-
tuting the displacement, velocity, and acceleration into the linear equations
of motion, and solving for the time derivative of the acceleration. As time
approaches infinity the dominate term on each side of the equation has the
stiffness matrix as a premultiplier. The time derivative of the acceleration
is proportional to the initial acceleration divided by the time. If the time
derivative is substituted into the modified Taylor series and if = is set to
3 and B is set to 2, then the acceleration is zero and the velocity is con-
stant. The eigenvalues becomezero and one.

MA+CV +KR=F

( 1 K)" IM 1 t2K) A(O) - (C + tK)V(O) - KR(O)tM+ 15t2c+lot 3 A(E,) =F- +tC+_-6

AS t -°°

R = RIO)+ VlOlt

(V =v(O)+ 1-g a

LET a=3 AND I_=2

• R = R(0)+ V(0)t V =V(0) A = 0

0D-88-32938

1-70



ITERATIVESOLUTION

If the initial displacement, velocity, and acceleration, and an initial esti-
mate of the time derivative of the acceleration are given, then estimates of
the advanced displacement, velocity, and acceleration are given by using the
modified Taylor series. If a correction to the estimate of the time derivative
of the acceleration is given, then new estimates of the displacement, velocity,
and acceleration are given by the modified Taylor series. The correction to
the time derivative of the acceleration can be found from the equations of
motion.

GIVEN R(O), V(O), A(O), AND ,_(E,)~,_ (0)

21__ 1 _{O)t3THEN R(0) = R(O) + V(O)t + A(O)t2 + _.

V(0) = V(O) + A(O)t + 1 i5,_(O)t2

A (0) : A(O) + ,_(O)t

R(t) : R(0) + 1 nA%t3
6

V(t) = V (0) + 113A_t 2

A(t) = A(0) + ARt

LET

THEN

CD-88-32939
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NONLINEAREQUATIONSOFMOTION

The nonlinear equations of motion are the sumof both the static and dynamic
forces for each element. As such, the equations are functions of the displace-
ment, velocity, acceleration, and time. If the modified Taylor series is
substituted into the equations of motion using the iterative form, then the
equations of motion becomea function of the correction to the time derivative
of the acceleration.

0 = F(R,V, A,t)

WHERE F IS AN n ELEMENTVECTOR SUM OF THE STATIC AND DYNAMIC FORCES

THEN

0 = F(R(O)+6"ic_t 3,v(O)+ 2113A_t2' A(O)+ A_to t/

OR

CD-88-32940
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LINEARIZEDEQUATIONSOFMOTION

To solve for the correction, the equations of motion are linearized about the
estimated values. The instantaneous stiffness, damping, and massare defined
by the various partial derivatives with respect to displacement, velocity, and
acceleration. If the linearization is donenumerically, the stiffness, damp-
ing, and massdo not have to be calculated. The numerical differentiation of
the correction to the time derivative of the acceleration is all that is
needed.

This solution procedure is equivalent to the Newton-Raphsontechnique. The
numerical differentiation and the solution of the linearized equations of
motion are computationally time consuming, although straight forward. The
multigrid technique could bepotentially orders of magnitudes faster. The
linearized equations of motion will be the basis for generating a coarse model
from a fine model.

WHERE

0 = F(0) - BA,_

F(0): F(R(0),V(0),A (0),t)

:i ot3K+ 1 13t2C+ tMB

i

K:-0F C:'aF M:-0F

• BA,_--F(0)

CD-88-32941
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STRUCTURAL CONDENSATION

If the linearized equation set is partitioned into nodes belonging to a coarse

model (upper partition) and the nodes that are eliminated from the fine model

(lower partition), then structural condensation can be used to solve for the

coarse model. In addition, the structural condensation process can be used to

interpolate the solution from the coarse model to the fine model. If the higher

frequency part of the solution is found on the fine model and the lower fre-

quency part of the solution is found on the coarse model, then the resultant

forces must be zero. Thus the solution for the nodes eliminated from the fine

model can be found.

IB22JLAA2J

-1 (f) -1 (f)
(BII-BI2B22B21)AA I:F I -BI2B22F2

-1 [ (f) • )A,_2: B22_F2 - B21AA I

-1 F(C) (_) -1 (f)LET B(c) = Bll - B12B22B21, = F - B12B22F2

•. B(c)A,_I : F(C)

_f) -i •IF F 0 = Z_,A2 (INTERPOLATOR): : -B22B21AA I

CD-88-32942
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FINE-TO-COARSE AND COARSE-T0-FINE MODEL TRANSFORMATIONS

The fine-to-coarse model transformation is a rectangular matrix that averages

the force from the fine model to the coarse model. The upper partition is an

identity matrix, and the lower partition is defined in the structural condensa-

tion process. The coarse-to-fine transformation interpolates the correction of

the time derivative of the acceleration from the coarse to fine model. In the

symmetric case, the fine-to-coarse transformation is the transpose of the

coarse-to-fine transformation.

FINE-TO-COARSE MODEL TRANSFORMATION

I@: -I

-B22B21

= AA =@AA 1

COARSE-TO-FINE MODEL TRANSFORMATION

[I' -2] F(C) eF(f)i-BI2B2 = :B= I

• BAR: F(f) = BB@A/_1:0F (f)

OR

B(C)A/_I: F(c)

CD-88-32943
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NONLINEARCONDENSATION

The nonlinear condensation process transforms the independent variables from
the coarse model to the fine model and the dependent variables from the fine
to coarse model. Thus the resultant forces are relaxed on the coarse model.
This would only require the inversion of a diagonal matrix. The corrections
on the coarse model are then interpolated to the fine model. The lineariza-
tion of the equations of motion are not needed in the solution process, but
are needed only to define the transformations.

0 = F(A,_) = o: eF(_AA1)

RELAXATION

O=SF (f)-DAA I = A/_ I:D-IF (c)

CD-88-32944
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LOCAL STRUCTURAL CONDENSATION

The linearization of the equations of motion and the structural condensation

process requires a considerable amount of computational time. Multigrid via

relaxation is most efficient on nearest neighbor interactions. Thus only a

partial linearization of the equations of motion is necessary. The equations

of motion have to be linearized only with respect to the node under considera-

tion and its nearest neighbors. Applying condensation to this local inter-

action model results in local structural condensation. In the case of a beam,

this linearization results in a block tridiagonal matrix and the structural

condensation results in a coarse model in which every other node is removed

from the fine model.

\
)

I

i

\

B IS BLOCK TRIDIAGONAL--INCLUDES NEAREST NEIGHBOR INTERACTION,

NEGLECTS FAR INTERACTION

CD-88-32945
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BEAM EXAMPLE

If the tridiagonal equation set is reordered so that the even numbers are in

the upper partition for both the fine and coarse model and the odd numbers are

in the lower partition for the fine model, then the structural condensation has

a simple form. In the reordered equation set, the block matrices on the diago-

nal of the partitions are diagonal. The inversions of these block matrices

are trivial.

ZlW 1

U2Z2W 2

U3Z3W 3

U4Z4W 4

UsZsW5

U6Z6W6

U7Z7W7
U8Z8W8

_ U9Z9

E-hl E-h.
z4_._..,'Ju4w,__.,,'

I

(,"'_Z 6 I(,_U6W6

Z8_ U8W8

O

_v1 f--,j z1

0,w l,,O
UsW5 I Z 5

_ u,w,ICh
U9 _ Z9

,'- • -

AA 1
i

i •
IAA2
! .

i AA3

_A4

AA 5

AA 6

AA 7

AA 8

AA 9

I+"
AAA

rAA_

IAA_

IAA_

IAA_

IAA7

IAAo

P i

_21

I-_ I

r41

= l'c,I
J

%1

r7 1

rsl

_FQI

!r2

i r4
i

F6

F8

F1

F3

i P

It7

i P

Iv(}
_ .

BA/_ = F(f)

B21

CD-88-32946
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SOLUTION OF BEAM EXAMPLE

The solution for the nonidentity partition of both transformations is tridiag-
onal. For the fine-to-coarse transformation, the nonidentity partition is also

lower triangular. For the coarse-to-fine transformation, the nonidentity par-
tition is also upper triangular.

-I
-B22B21 :

--TI

$2T2(_

S3T3

-I
TL : -Z2L_IW2L_I

-i
SL : -Z2L_IU2L_I

-I
- B12B22--

-XIYI

X2Y2_

X3Y3

_X4Y 4

-I
XL : -U2LZ2L_I

-i
YL : -W2LZ2L+I

-I
BII- BI2B22B21 :

- (c) (c)

Z 1 W1
(c) (c) (c)

U2 Z2 W2

(c)(c)(<,1
U3 Z3 W3 I

(c)
Z L : Z2L + XLW2L_I + YLU2L+I

(c)
UL : XLU2L_I

(c)
WL = YLW2L+I

•(c) .(c)
AA2L_I: SLAAL_I+ TLAAL

(c)
FL :F2L+ XLF2L-I+ YLF2L+I CD-88-32947
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ACCELERATION PARAMETER

Normally the relaxation technique can be improved by using a weighted average

of the previous and present calculated values of the corrections to the solu-

tion (overrelaxation). The rate of convergence of the high-frequency compo-

nents can be improved at the expense of the low-frequency components. For

this improvement, an estimate of the highest frequency eigenvalue is needed.

The Rayleigh quotient is a good method to estimate the highest eigenvalue (at

least in the symmetric case). In addition the highest eigenvalue should be a

strong function of the nearest neighbors, therefore local linearization could

be used in the Rayleigh quotient.

,E(,_) IS BASED ON LOCAL COEFFICIENTS

(_ _) T D (A _')

THIS IS THE RAYLEIGH QUOTIENT

CD-88-32948
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MULTIGRIDMETHOD

In sun_nary, the multigrid method for structural dynamics is performed as fol-
lows. First relax the equations of motion on the fine grid to obtain the high-
frequency componentsof the solution. Then calculate the norm of the residual
on the fine model. Next check to see that the norm is small enough for a
solution. If not, check to see if the normhas changed significantly from the
previous iteration. If the norm has changed, then relax the solution until
the norm stops changing. This indicates that the high-frequency componentson
this model have been found.

To find the lower frequency componentsof the solution, use the local struc-
tural condensation to generate a coarse model. On the coarse model, use relax-
ation to generate the lower frequency componentsof the solution. These lower
frequency componentsare interpolated to the fine grid where the norm of the
residual is calculated. Based on this norm, either a solution is found, more
relaxation is needed, or a coarser model is needed. The process is repeated
until a solution is found.

• RELAX ON FINE GRID TO GET HIGH-FREQUENCY COMPONENT

• CALCULATE RESIDUAL ON FINE GRID

• CHECK RESIDUAL FOR SOLUTION

• CHECK CHANGE IN RESIDUAL FOR CHANGE IN GRID

• STATIC CONDENSE TO COARSE GRID

• RELAX ON COARSE GRID TO GET LOW-FREQUENCY COMPONENT

• INTERPOLATE LOW-FREQUENCY TO FINE GRID

CD-88-32950

PHYSICAL MODEL

FINE MODEL

COARSE MODEL
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MULTIGRID ANALYSIS APPLIED TO

TRANSMISSION DYNAMICS

Complete transmission dynamic analyses are rare in the open literature. David

and Mitchell (1986) have used a modal balance technique. The problem with

modal techniques is that the nonlinearities cause the set of modes not to be

closed. This results in side bands around the tooth passing frequency. There-

fore, the solutions may not always include all of the important modes. Also,

superfluous modes tend to overwhelm the solution technique. The time march

multigrid method should eliminate these problems.
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TRANSMISSIONDYNAMICANALYSIS

Transmission dynamics is a case of nonlinear structural dynamics. Physically
a transmission is composedof gears, shafts, bearings, seals, and a case. The
case and the shafts can be modeled by finite element methods. The bearings and
seals are modeled by special programs developed in tribology and other areas.
Gear interactions are developed for somekinds of gears, but not for others.
Thus a transmission can be modeled by a number of linear and nonlinear finite
elements. As a first approximation, a transmission can be modeled as a beam
structure. The transmission can be analyzed as a multishaft, combined lateral,
torsional, and axial rotordynamic system.

PHYSICALMODEL NONLINEARFINITEELEMENTMODEL

CD-88-32952
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SPECIAL FEATURES

Special features complicate the dynamic analysis of transmissions. Gyroscopic

and gear forces cause nonlinear lateral and torsional coupling. Gear-tooth

passing frequencies are high-frequency forcing functions and, therefore, imply

a need for a fine structural model. Gear-gear interactions cause the system

to have a wide bandwidth.

• GYROSCOPIC AND GEAR FORCES CAUSE NONLINEAR LATERAL AND TORSIONAL

COUPLING

• GEARTOOTH PASSING FREQUENCIES ARE HIGHFREQUENCY FORCING FUNCTIONS--

IMPLIES NEED FOR FINE STRUCTURAL MODEL

• GEARGEAR INTERACTIONS CAUSE WIDE BAND WIDTH

CD-88-32953
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GEARTOOTHINTERACTION

Consider gear tooth interaction. For any gear set, the line of force does not
pass through the gear centers. In the case of spur gears any perturbation of
the radial force will result in a perturbation of the tangential force and vice
versa. In the case of helical or spiral gears any perturbation of the radial
force will result in perturbations of both the axial and tangential force.
These perturbations result in a nonlinear coupling between the axial, tangen-
tial, and radial directions.

SPUR GEAR HELICAL GEAR

IF r=F ttan_ I Fr=Fttan_ Fr=F ttan_/ =_
F,= Gt / Gt

- -- r

Fa = Ft ta"_"_

CD-88-32954
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GEARTOOTHMODEL

Consider the gear tooth interactions of a spur gear set. The contact point
varies as the angle of the gear set varies. Machining errors cause the contact
point to move. High torque can cause the teeth to bend. The number of teeth
in contact varies as the torque varies. Negative torque can result in back-
lash. The force must be transmitted through the contact point. All these
effects cause nonlinear time varying interactions between the spur gears set.
For the other kind of gears the interaction is more complicated. Thus, gear
tooth interactions cause high-frequency forcing functions on the structure.

_- LINE OF ACTION

/ ")

CD-88-32955
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TYPICALTRANSMISSION

In a typical transmission there are manygear sets. Each of these gear sets
causes one location on the structure to interact with another point on the
structure. Thus, far interactions are important and the structural model has
a wide bandwidth.

m

!

I

CD-88-32956
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POTENTIALIMPACT

The multigrid method, although used for years in fluid dynamics, now offers a
new approach to nonlinear structural dynamics. The computing time does not
depend on the cube of the number of degrees of freedom. Thus, dramatic reduc-
tions in computing time are possible. In addition, the relaxation process is
applicable to parallel computation. Thus, the method is very attractive for
future computers.

• NEW APPROACH TO NONLINEAR STRUCTURAL DYNAMIC SIMULATION

• DRAMATIC REDUCTION IN COMPUTING TIME

• APPLICABLE TO PARALLEL COMPUTERS

CD-88-32957
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APPENDIX - SYMBOLS

acceleration vector

linearized coefficient matrix

damping matrix

diagonal matrix

force vector

gear torque

stiffness matrix

mass matrix

number of degrees of freedom

displacement vector

pitch radius of gear

block matrix used in _ (beam solution)

block matrix used in _ (beam solution)

time

block matrix on lower diagonal of B

velocity vector

block matrix on upper diagonal of B

block matrix used in ® (beam solution)

block matrix used in ® (beam solution)

block matrix on diagonal of B

constant, modifying Taylor series

constant, modifying Taylor series

weighting factor used in overrelaxation

coarse-to-fine transformation

helical gear angle

highest eigenvalue

value between 0 and t
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fine-to-coarse transformation

pressure angle

Subscripts:

a axial

L node number

r radial

t tangential

Superscripts:

c coarse model

f fine model

T transpose

• time derivative

(0) estimated value
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